Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

author

  • J Pourahmad
Abstract:

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanthine oxidase, cytochrome P450, and mitochondria electron transport. The rat hepatocyte catalyzed oxidation of 2',7'-dichlorofluorescin to form the fluorescent 2,7'-dichlorofluorescein was used to measure endogenous and xenobiotic-induced reactive oxygen species ("ROS") formation by intact isolated rat hepatocytes. Various oxidase substrates and inhibitors were then used to identify the intracellular oxidases responsible. Endogenous "ROS" formation was markedly increased in catalase inhibited or GSH depleted hepatocytes, and was inhibited by "ROS" scavengers or desferoxamine. Endogenous "ROS" formation was also inhibited by cytochrome P450 inhibitors, but was not affected by oxypurinol, a xanthine oxidase inhibitor. Mitochondrial respiratory chain inhibitors or hypoxia, on the other hand, markedly increased "ROS" before cytotoxicity ensued. This suggests endogenous "ROS" formation can largely be attributed to oxygen reduction by reduced mitochondrial electron transport components and reduced cytochrome P450 isozymes. Addition of monoamine oxidase substrates increased antimycin A-resistant respiration and "ROS" formation before cytotoxicity ensued. On the other hand peroxisomal substrates readily induced "ROS" formation and were cytotoxic towards catalase inhibited hepatocytes, which suggests that peroxisomal catalase removes endogenous H2O2 formed in the peroxisomes. The consequences of upregulation of peroxisomal oxidases are discussed.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

P-122: Sperm Intracellular Reactive Oxygen Species Incidence in Ram Fed A Diet with Fish Oil

Background: Basal level of reactive oxygen species (ROS) is essential for sperm acrosomal reaction, hyperactivation, motility, capacitation and fertilization. Ram spermatozoa contain large quantities of polyunsaturated fatty acids in their plasma membranes so are extremely susceptible to ROS induced damage. Materials and Methods: Eight rams (36 ± 5 month of age and with a weight of 64 ± 7 kg) w...

full text

I-3: Reactive Oxygen Species: A Dilemma for

Spermatozoa are very special cells and constantly exposed to the interphase between oxidative stress through high amounts of reactive oxygen species (ROS) and leukocytes, and reduction by means of scavengers and antioxidants. Considering the very special functions of spermatozoa as being the only cells with such high polarization and exerting their functions outside the body, even in a differen...

full text

Time-Dependent Stabilization of Hypoxia Inducible Factor-1α by Different Intracellular Sources of Reactive Oxygen Species

Intratumoral hypoxia is a major obstacle in the development of effective cancer chemotherapy, decreasing the efficacy of anti-neoplastic drugs in several solid tumours. The hypoxic environment, through its master regulator hypoxia inducible factor-1 (HIF-1), is able to maintain an anti-apoptotic potential through activation of critical genes associated with drug resistance. Besides affecting me...

full text

Methylglyoxal impairs the insulin signaling pathways independently of the formation of intracellular reactive oxygen species.

Nonenzymatic glycation is increased in diabetes and leads to elevated levels of advanced glycation end products (AGEs), which link hyperglycemia to the induction of insulin resistance. In hyperglycemic conditions, intracellularly formed alpha-ketoaldehydes, such as methylglyoxal, are an essential source of intracellular AGEs, and the abnormal accumulation of methylglyoxal is related to the deve...

full text

Iberis amara Extract Induces Intracellular Formation of Reactive Oxygen Species and Inhibits Colon Cancer

Massively increasing global incidences of colorectal cancer require efficient treatment and prevention strategies. Here, we report unexpected anticancerogenic effects of hydroethanolic Iberis amara extract (IAE), which is known as a widely used phytomedical product for treating gastrointestinal complaints. IAE significantly inhibited the proliferation of HT-29 and T84 colon carcinoma cells with...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume Volume 1  issue Number 1

pages  21- 29

publication date 2010-11-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023